Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

On study of chemoselectivity of reaction of trialkylalanes with alkenes, catalyzed with Zr π -complexes

Lyudmila V. Parfenova*, Vener Z. Gabdrakhmanov, Leonard M. Khalilov, Usein M. Dzhemilev

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 450075 Ufa, Prospect Oktyabrya, 141, Russian Federation

ARTICLE INFO

Article history: Received 30 March 2009 Received in revised form 21 July 2009 Accepted 24 July 2009 Available online 30 July 2009

Keywords: Organoaluminium compounds Zr π -complexes Hydroalumination Carboalumination Cycloalumination Dimerization

ABSTRACT

The influence of the organoaluminium compound nature, Zr π -ligand environment, solvent type and reagent ratio on the chemoselectivity of reactions of trialkylalanes (AlMe₃, AlEt₃) with alkenes, catalyzed with L₂ZrCl₂ [L = Cp, Cp' (Cp'- η^5 -C₅H₄CH₃), Cp^{*} (Cp^{*}- η^5 -C₅(CH₃)₅), Ind (indenyl), Flu (fluorenyl)] has been studied. It is shown that in the case of AlMe₃, the hydro- and carboalumination products, and alkene dimers are formed. The catalytic reaction of AlEt₃ with the olefins yields aluminacyclopentanes altogether with the hydro- and carboalumination products, and the dimers. A probable reaction mechanism has been proposed. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

The reactions of trialkylalanes with olefins and acetylenes, catalyzed with Zr complexes, are widely applied in organic and organometallic chemistry. It was shown that the process chemoselectivity significantly depends on the type of organoaluminium compounds (OACs). For example, in several works by Negishi [1], the reaction of AlMe₃ with acetylenes, in the presence of Cp₂ZrCl₂ catalyst, follows predominantly the carbometallation pathway. The authors proposed the Zr,Al-complexes as being the key reaction intermediates, which are formed as a result of a ligand exchange between AlMe₃ and Cp₂ZrCl₂ (Scheme 1) [1b–e].

Later, the authors showed that a similar reaction of $AlMe_3$ with olefin (octene-1), in the presence of 8 mol% Cp_2ZrCl_2 , provides both 2-methylalkene (2) and dimerization product (3), instead of expected 2-methylalkylalane (1) (Scheme 2) [2a].

It was shown that the application of Zr complexes with the sterically hindered π -ligands, for example, Erker's catalyst – bis(1-neomenthylindenyl)zirconium dichloride (Ind₂^{*}ZrCl₂), is the only way which allows carbometallation of olefins at high chemo- and stereoselectivity [2a,b].

It should be also mentioned that asymmetric methylalumination of monosubstituted alkenes, catalyzed with Ind^{*}₂ZrCl₂, can be significantly accelerated by the action of either water or MAO [3].

Earlier in Dzhemilev's works [4a-c], it was shown that the use of AlEt₃ in the reactions with alkenes and acetylenes, in the pres-

ence of Cp_2ZrCl_2 catalyst, in hexane, provides cyclic OACs (**4** and **5**) (Scheme 3).

A mechanistic study of these reactions pointed out the fact of key Zr,Al-complex **14** generation; this complex readily interacts with olefins [1d,4d,e]. The complex was first described by Kaminsky during his NMR study of AlEt₃–Cp₂ZrCl₂ system [5].

AlBu₃ⁱ in these reactions exclusively yields the alkene hydroalumination products [6]. In this case a fast process of β -C–H activation in [Cp₂ZrBuⁱ] species occurs and results in the formation of Zr,Al-hydride complexes, which hydrometallates olefins [7].

In summary, the information in literature which concerns chemoselectivity of reactions of trialkylalanes (AlMe₃ and AlEt₃) with olefins, in the presence of zirconocene catalysts, appears to be fragmentary and inconsistent, despite the fact of being important in mechanistic research. Therefore, the purpose of this work is a systematic study of the influence of various factors on the chemoselectivity of the reactions. Among the major factors we have considered the following: the type of the OAC, Zr π -ligand environment, initial reagent ratios and the solvent nature.

2. Results and discussion

2.1. Chemoselectivity of the reaction of hexene-1 with AlMe₃, catalyzed with L_2ZrCl_2

The reaction of hexene-1 with AlMe₃, in the presence of 2 mol% of L_2ZrCl_2 (L = Cp, Cp', Cp*, Ind, Flu), at mole ratio Me₃Al:alke-ne: L_2ZrCl_2 = 60:50:1, and room temperature, proceeds with the

^{*} Corresponding author. Tel.: +7 3472 313527; fax: +7 3472 312750. *E-mail addresses*: luda_parfenova@yahoo.com, ink@anrb.ru (L.V. Parfenova).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.07.037

Scheme 1.

Scheme 2.

formation of carbo- (**1a**, **2a**), hydroalumination (**6a**) products and dimers (**3**) with the total yield of up to 92% (Scheme 4).

According to the data presented in Table 1, the conversion of hexene-1 and chemoselectivity of the reaction significantly depend on the structure of π -ligand in the zirconium complex and on the solvent nature. Thus, the reaction, which runs in the presence of Zr complexes with Cp and Cp' ligands, yields mainly dimers (**3**); an essential part of those consists of "head-to-tail" dimerization product (mole ratio ht:tt ~ 7:1). Formation of α -olefin dimers in the systems OAC – transition metal complex was repeatedly discussed in literature (see, for example, [8]). In the case of Cp₂ZrCl₂ and Cp'₂ZrCl₂ the aromatic solvent replacement with CH₂Cl₂ does not change the ratio between products **1a**, **2a**, and **6a**, but substantially increases the yield of dimerization products **3**.

In the reaction of AlMe₃ with hexene-1, in the presence of Zr π complexes with sterically hindered ligands (L = Cp^{*}, Ind or Flu), a predominance of the carboalumination process (products **1a** + **2a**) was observed. Application of CH₂Cl₂ as the solvent, and Cp^{*}₂ZrCl₂ or Flu₂ZrCl₂ as the catalysts, selectively gives **1a** with the yield of over 50%; in this case the yield of dimers **3** decreases with the growth of Zr π -ligand size.

The NMR ¹³C spectrum of **1a** exhibits characteristic broadened signal of α -carbon atom attached to Al [9a] at 20.9 ppm; this signal correlates with proton resonance lines of AB system in ¹H spectra

at high field in the range of 0–0.2 ppm. These protons are diastereotopic due to the neighboring chiral center at β -carbon atom. The chemical shift of 155.9 ppm in ²⁷Al NMR spectrum confirms the dimeric structure of **1a** [9b].

Further, we studied OAC, $Cp_2^*ZrCl_2$, and alkene concentration influence on the reaction product yields. As shown in Table 2, the increase in the catalyst concentration accelerates the carboalumination process (products **1a** + **2a**). At stoichiometric conditions, when the mole ratio Me₃Al: alkene: $Cp_2^*ZrCl_2$ is 2:2:1, almost selective formation of **1a** with yield of 65% was observed.

Taking into account reaction mechanisms proposed in Refs. [2a,8b,c], and also considering the experimental data concerning interligand change between AIR_3 and zirconocenes [5,10], we suggested Scheme 5.

In the first stage of the process, AlMe₃ alkylates the zirconocene, thus, providing complex **9**, which then carbometallates alkenes with the formation of intermediate **10**. Further, the transmetallation of **10** by trialkylalane gives carboalumination product **1** and, thus, finishes the small catalytic cycle **A**. In parallel to the transmetallation, intermediate **10** can undergo β -C-H-activation that results in disubstituted alkene **2** and hydride complex **11**, which initiates subsequent catalytic cycle **B**. This cycle runs via intermediate **12**, which appears to be the source of dimers **3** and hydroalumination products **6**. The observation of alkylalanes **6** indicates the contribution of the large catalytic cycle **C** into the whole process. Therefore, we can suggest that complex **9** is the key intermediate of reaction of AlMe₃ with alkenes, and this is the complex which drives the process through catalytic cycles **A**-C.

Scheme 4.

Table 1	
The product yields of the reaction of hexene-1 with AlMe ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlMe ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction times the reaction of hexene-1 with AlMe ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlMe ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction times the reaction of hexene-1 with AlMe ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlMe ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction times the reaction of hexene-1 with AlMe ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlMe ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction times the reaction of hexene-1 with AlMe ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlMe ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction times the reaction of hexene-1 with AlMe ₃ and thexene-1 with AlMe ₃ and the reaction of hexene-1 with AlMe ₃ a	me 24 h, 22

L_2ZrCl_2	Solvent	Hexene-1 conversion, %	Yield, %			
			1a (7a)	2a	6a (8)	3
Cp ₂ ZrCl ₂	CH_2Cl_2	92	3	14	7	68
	$C_6H_5CH_3$	69	3	21	7	38
$Cp_2'ZrCl_2$	CH_2Cl_2	84	11	14	7	52
	$C_6H_5CH_3$	39	9	9	9	12
$Cp_2^*ZrCl_2$	CH_2Cl_2	68	53	8	7	-
	$C_6H_5CH_3$	44	15	14	14	1
Ind ₂ ZrCl ₂	CH_2Cl_2	87	28	18	8	33
	$C_6H_5CH_3$	70	38	14	10	8
Flu ₂ ZrCl ₂	CH_2Cl_2	64	51	4	3	6
	$C_6H_5CH_3$	22	16	3	<1	3

Table 2
Influence of mole ratio AlMe3:hexane-1:Cp2ZrCl2 on the product yields (reaction tim
24 h, 22 °C, CH ₂ Cl ₂).

Table 2

Mole ratio	Hexene-1 conversion, %	Yield, %			
AlMe3:alkene:Cp2ZrCl2		1a (7a)	2a	6a (8)	3
60:50:1	68	53	8	7	-
60:50:2	71	59	5	6	1
2:2:1	67	65	2	-	1

It should be noted that the long reaction time of 24 h, during which we observed only 70% of the alkene conversion (e.g. in system Me₃Al–alkene–Cp₂^{*}ZrCl₂), testifies a slow rate of the alkene introduction into complex **9**, which is the result of electronic and steric ligand effects [10]. The decrease in dimer **3** yield altogether with the growth of π -ligand size can also be affected by the same electronic and steric factors, which disturb the introduction of the second alkene molecule into intermediate **12**. Moreover, the influence of a solvent on the yield of carboalumination products and dimers probably is connected with the stability of the complexes **9** and **12** and also with the ratio of the reaction rates, which run through the cycles **A**, **B** and **C**.

Thus, the proposed scheme adequately describes the experimental data obtained; however, the mechanism is still questionable, since both the structure of the catalytically active centers and the mechanism of alkenes introduction into bimetallic systems are unclear. These problems have been discussed in numerous works, e.g. [11, and ref. cited herein], and, of course, the scheme proposed by us requires additional experimental and theoretical verification.

According to Scheme 5, one can assume that zirconocene hydrides of type **11** should be capable to catalyze not only the hydrometalation reactions, but also the alkene carbometallion and dimerization reactions. Indeed we found that reaction of hexene-1 with AlMe₃ in the presence of either L_2ZrH_2 or L_2ZrHCl (L = Cp, Cp') both under the catalytic and stoichiometric conditions results in the same products as in the case of L_2ZrCl_2 (Table 3).

2.2. Chemoselectivity of the reaction of hexene-1 with AlEt₃, catalyzed with L_2ZrCl_2

The reaction of hexene-1 with AlEt₃, in the presence of 2 mol% of L_2ZrCl_2 (Scheme 6), at room temperature, yields the products of cyclo- (**4**), carbo- (**1b**, **2b**) and hydroalumination (**6a**). Moreover, in some reactions we identified dimers **3**.

As follows from Table 4, alkene conversion in the reaction with AlEt₃ mainly does not depend on the catalyst type and the solvent

nature, and the total yield of products is more than 90%. The conversion decreased to 71–88% only in the case of Flu₂ZrCl₂.

We observed the maximal yields of aluminacyclopentane **4** (>63%) in the reaction that run in benzene and in the presence of Zr complexes substituted with Cp, Cṕ, Cp^{*} and Ind ligands. The use of CH₂Cl₂ as the solvent altogether with Zr catalysts, which contain bulky ligands (Cp^{*}, Ind), increases the yield of carbometallation product **1b** to 48%. The formation of dimers **3** was found in the reaction of hexene-1 with AlEt₃, catalyzed with Flu₂ZrCl₂. Noteworthy, the maximal yield of **3** of up to 49% was achieved in CH₂Cl₂, as in the case of AlMe₃. The unusual behavior of fluorenyl complex can be caused by the tendency of π -ligands toward η^3 -coordination [12].

Further we studied the influence of initial reagents mole ratio on the product yields (Table 5).

As shown in Table 5, the raising of OAC, alkene or catalyst concentration under the catalytic conditions reduces both the hexene-1 conversion and the yield of ethylalumination products (**1b** and **2b**), and increases the yield of hydroalumination product (**6b**) and aluminacyclopentane (**4**). At stoichiometric conditions we observed the high alkene conversion, while the ratio **1b**:**4** remained the same \sim 2:1.

The 1-diethylalumina-2-butylhexane (**1b**) was identified by both the analysis of deuterolysis product and the means of ¹H, ¹³C, ²⁷Al NMR spectroscopy using one- and two-dimensional procedures. Thus, the NMR ¹³C spectrum of **1b**, also as spectrum of **1a**, exhibits broadened signal of α -carbon atom bonded with Al at 18.5 ppm. The signal corresponds to the multiplet at 0.48 ppm in ¹H spectra, which shape is not change in the temperature range of 220–300 K. This fact and also the ²⁷Al chemical shift of **1b** at 166.9 ppm prove the dimeric structure of **1b**. In contrast to **1a** the protons of AlCH₂ group at 0.48 ppm of **1b** are not diastereotopic, probably, due to the reducing of chirality degree at β -carbon atom, which occurs as a result of replacement of methyl in **1a** with ethyl group in **1b** [13, p. 65].

Thus, summarizing experimental results we suppose that reactions in catalytic system $L_2ZrCl_2-AlEt_3$ -alkene run by the same pathways, which are shown in Scheme 5, however, one additional catalytic cycle **D**, which provides cyclometallation products, is added.

The increasing of carbometallation product (**1** and **2**) yield with the use of chlorine-containing solvent (CH_2Cl_2) and Zr complexes substituted with bulky ligands (Cp^* , Ind) could be caused by the raising of complex **9** living time due to the decreasing of rates of both interligand exchange and β -C-H activation processes. The lower yield of dimers **3** in the case of AlEt₃ comparably with AlMe₃ could be caused by rapid transmetallation of complex **12** into complex **6**.

°C).

Table 3

Influence of mole ratio and Zr π -ligand environment on the product yields in the reaction of hexene-1 with AlMe₃ in the presence of zirconocene hydrides L₂ZrH₂ or L₂ZrHCl [L = Cp, Cp'] (reaction time 24 h, 22°C, toluene).

L_2ZrH_2	Mole ratio	Hexene-1 conversion, %	Yield, %			
	AlMe3:alkene:[Zr]		1a (7a)	2a	6a (8)	3
Cp ₂ ZrHCl	60:50:1	69	2	10	11	46
	2:1:1	88	4	13	38	33
	2:2:1	97	14	4	37	42
Cp ₂ ZrH ₂	60:50:1	40	8	-	3	29
	2:1:1	62	11	-	5	46
	2:2:1	58	13	7	9	38
$Cp_2'ZrH_2$	60:50:1	70	29	21	7	13
	2:1:1	54	40	-	11	3
	2:2:1	72	37	4	6	25

Table 4 The product yields of the reaction of hexene-1 with AlEt ₃ , catalyzed with L_2ZrCl_2 (mole ratio AlEt ₃ :alkene: L_2ZrCl_2 = 60:50:1, reaction time 24 h, 22 °C).									
L_2ZrCl_2	Solvent	Hexene-1 conversion, %	Yield, %						
			1b (7b)	2b	4 (16)	6b (8)			
Cp ₂ ZrCl ₂	CH_2Cl_2 C_6H_6	96 91	16 24	16 2	51 63	13 2			

			1b (7b)	2b	4 (16)	6b (8)	3
Cp ₂ ZrCl ₂	CH_2Cl_2	96	16	16	51	13	<1
	C_6H_6	91	24	2	63	2	-
$Cp_2'ZrCl_2$	CH_2Cl_2	98	16	9	62	10	-
	C_6H_6	97	6	10	69	12	-
$Cp_2^*ZrCl_2$	CH_2Cl_2	99	48	13	21	10	7
	C_6H_6	96	15	2	74	5	-
Ind ₂ ZrCl ₂	CH_2Cl_2	93	36	3	45	7	2
	C_6H_6	99	25	-	74	<1	<1
Flu ₂ ZrCl ₂	CH_2Cl_2	88	6	19	6	14	49
	C_6H_6	71	8	13	31	12	10

Table 5

Influence of mole ratio AlEt₃:hexene-1:Cp^{*}₂ZrCl₂ on the product yields (reaction time 24 h, 22 °C, CH₂Cl₂).

Mole ratio	Mole ratio Hexene-1 Yield, %					
$AlEt_3$: alkene: $Cp_2^*ZrCl_2$	conversion, %	1b (7b)	2b	4 (16)	6b (8)	3
60:50:1	~ 99	48	13	21	10	7
60:50:2	76	43	4	20	7	2
120:50:1	74	16	9	36	12	1
60:100:1	80	19	9	35	14	3
2:2:1	98	60	1	33	4	1

We found that as in the case of AlMe₃ zirconocene hydrides $(L_2ZrH_2 \text{ or } L_2ZrHCl [L = Cp, Cp'])$ catalyze the reaction of AlEt₃ with hexene-1, which provides the same hydro-, carbo-, cyclometallation products and dimers (Table 6). Therefore, the zirconocene hy-

drides of type 11 (Scheme 5) could be the possible intermediates of the reaction.

Interestingly that the reaction of AlEt₃ with hexene-1 in the presence of 2 mol% of L_2ZrH_2 (L = Cp, Cp') gave aluminacyclopentane 4 with high yield of 75-83%. According to Scheme 5, formation of aluminacylopentane is possible through the fivemembered intermediate 14, which contains Zr-Cl-Al bridge. Probably, zirconocene dihydrides generate the intermediate 14' similar to 14, which also cyclometallate alkenes (Scheme 7). The NMR study of Cp₂ZrH₂ and AlEt₃ interaction (1:2) confirmed the generation of complex 14' through the known hydride complex 16 [7a]. Complex 14' is formed altogether with intermediate of preliminary structure 17, which contains [Cp₂ZrH₃] fragment with three different hydrides. The fast interaction of 17 with hexene-1 gave the hydrometallation product 6b, whereas complex 14' slowly reacted with alkene providing aluminacyclopentane 4.

Table 6

Influence of mole ratio and Zr π-ligand environment on the product yields in the reaction of hexene-1 with AlEt₃ in the presence of zirconocene hydrides L₂ZrH₂ or L₂ZrHCl [L = Cp, Cp'] (reaction time 24 h, 22 °C, benzene).

L_2ZrH_2	Mole ratio	Hexene-1 conversion,%	Yield, %				
	AlEt ₃ :alkene:[Zr]		1b (7b)	2b	4 (16)	6b (8)	3
Cp ₂ ZrHCl	60:50:1 2:1:1 2:2:1	96 94 96	5 - 9	6 - 1	62 38 42	22 56 43	<1 - <1
Cp_2ZrH_2	60:50:1 2:1:1 2:2:1	99 85 66	6 24 32	1 2 3	75 54 30	17 5 <1	- -
$Cp_2'ZrH_2$	60:50:1 2:1:1 2:2:1	99 98 98	3 38 16	<1 5 8	83 - 29	12 47 38	<1 8 7

3. Conclusion

The influence of the organoaluminium compound nature, Zr π ligand environment, solvent type and reagent ratio on the chemoselectivity of reactions of trialkylalanes (AlMe₃, AlEt₃) with alkenes, catalyzed with L₂ZrCl₂ has been studied. In the case of AlMe₃, the hydro- and carboalumination products, and alkene dimers are formed. The catalytic reaction of AlEt₃ with the olefins yields aluminacyclopentanes altogether with the hydro- and carboalumination products, and the dimers. It was shown that the OAC nature and Zr π -complex structure exhibit the most effect on the reactions pathway.

The reaction of alkenes with AlMe₃, which runs in chlorinated solvents (CH₂Cl₂) in the presence of Zr complexes with small π -ligands (Cp and Cp'), yields mainly dimers. The use of Zr complexes substituted with more bulky π -ligands (Cp^{*}, Ind) and chlorine-containing solvents (CH₂Cl₂) increases the carboalumination products yield. The chlorinated solvent replacement with hydrocarbons in reaction with AlEt₃ substantially increases the yield of aluminacyclopentanes.

We found that reaction of hexene-1 with AlMe₃ in the presence of either L_2ZrH_2 or L_2ZrHCl (L = Cp, Cṕ) both under the catalytic and stoichiometric conditions results in the same products as in the case of L_2ZrCl_2 . This fact implies participation of zirconcene hydrides as intermediates in the reaction of alkenes with AlR₃, catalyzed with L_2ZrCl_2 .

The probable reaction mechanism is proposed. The mechanism includes four catalytic cycles A-D, where the complex [L₂ZrRCl·AlR₃] is the key intermediate of the whole process.

4. Experimental

4.1. General

All operations with organometallic compounds were carried out under argon using Schlenk techniques. Solvents (benzene and toluene) were dried by refluxing over *i*-Bu₂AlH and freshly distilled prior to use. Methylene chloride was dried over P₂O₅. Commercially available 98% AlEt₃ and 97% AlMe₃ (Aldrich) were involved into the reactions. The catalysts L₂ZrCl₂ were prepared using the standard techniques from ZrCl₄ (99.5%, Aldrich) (L = Cp [14a], Cp' [14b], Ind [14c], Flu [14d]). Cp₂ZrCl₂ (97%) was purchased from Aldrich. The Schwartz reagents Cp₂ZrHCl and Cp₂ZrH₂ were prepared as described previously in Refs. [15,7a].

The NMR spectra ¹H, ¹³C and ²⁷Al were recorded on spectrometer Bruker AVANCE-400 (400.13 MHz (¹H), 100.62 MHz (¹³C) and 104.23 MHz (²⁷Al)). *d*₆-Benzene, *d*₈-toluene and *d*-chloroform were used as solvents and internal standards. The samples were prepared in standard tubes of 5 mm diameter. Chemical shifts are internally referenced to the TMS signal. ²⁷Al chemical shifts are referenced to the Al(H₂O)₆Cl₃ signal. One- and two-dimensional NMR spectra (COSY HH, HSQC, HMBC) were measured with standard pulse sequences.

The yields of hydro-, carbo- and cycloalumination products were determined from the yields of hydrolysis products, which were calculated relative to amount of the initial olefin. The hydrolysis products of reaction mixture were analyzed on chromatograph Carlo Erba (He, column $50,000 \times 0.32$ mm, fixed phase "Ultra-1", flame-ionizating detector). Mass spectra were obtained on spectrometer MD 800, TRIO 1000 VG Masslab (Great Britain).

4.2. Reaction of hexene-1 with AIR_3 (R = Me, Et) in the presence of L_2ZrCl_2 (L = Cp, Cp^* , Cp^* , Ind, Flu)

A 10 ml flask equipped with a magnetic stirrer and filled with argon was loaded with 1-2 mmol of L_2ZrCl_2 , 1.0 ml of methylene

chloride or toluene (benzene), 2–100 mmol of hexene-1 and 2–120 mmol of AlR₃. The reaction mixture was stirred for 24 h at 22 °C. Then the mixture was decomposed with 10% HCl or DCl at 0 °C. The products were extracted with benzene; further, the organic layer was dried over Na_2SO_4 and analyzed by GC or GC–MS.

4.2.1. 1-Dimethylalumina-2-methylhexane (2a)

¹H NMR (C₇D₈) δ 0.09, 0.11 (AB, dd, ²J_{HH} = 14.2 Hz, 2H, AlCH₂); 1.60–1.72 (m, 1H, CH); 0.96 (d, ³J_{HH} = 6.8 Hz, 3H, CH₃); 1.18–1.41 (m, 6H, CH₂); 0.92 (t, ³J_{HH} = 6.9 Hz, 3H, CH₃); -0.27 (s, 6H, MeAl). ¹³C NMR (C₆D₆) δ 20.89 (br, C₁), 30.54 (C₂), 41.79 (C₃), 29.88 (C₄), 23.02 (C₅), 14.02 (C₆), 24.52 (C₇), -7.40 (MeAl). ²⁷Al NMR (C₆D₆) δ 155.9.

4.2.2. 1-Diethylalumina-2-ethylhexane (3a)

¹H NMR (C₇D₈) δ 0.48 (m, 2H, AlCH₂CH), 1.59–1.62 (m, 1H, CH), 1.21–1.49 (m, 8H, CH₂), 0.90–0.95 (m, 6H, CH₃), 0.24–0.31 (m, 4H, AlCH₂CH₃), 1.14 (t, ³J_{HH} = 8.0 Hz, 6H, AlCH₂CH₃). ¹³C NMR (C₆D₆) δ 18.56 (br, C₁), 36.58 (C₂), 38.51 (C₃), 31.21 (C₄), 23.09 (C₅), 13.95 (C₆), 29.52 (C₇), 11.23 (C₈), 7.59 (CH₃CH₂Al), 2.40 (br., CH₂Al). ²⁷Al NMR (C₆D₆) δ 166.9.

4.2.3. 1-Deuterio-2-methylhexane (7a)

¹H NMR (CDCl₃) δ 0.90–0.93 (m, 2H, CH₂D), 0.94 (d, ³J_{HH} = 6.8 Hz, 3H, CH₃CH), 0.96 (t, ³J_{HH} = 6.0 Hz, 3H, CH₃), 1.48– 1.52 (m, 1H, CH), 1.18–1.21 (m, 4H, CH₂), 1.32–1.36 (m, 2H, CH₂CH₃). ¹³C NMR (CDCl₃) δ 22.53 (t, C₁, J_{C-D} = 18.9 Hz), 29.90 (C₂), 38.95 (C₃), 31.46 (C₄), 23.19 (C₅), 14.35 (C₆), 22.83 (C₇). MS *m*/*z*: 101 [M⁺].

4.2.4. Deuterio-2-ethylhexane (7b)

¹H NMR (CDCl₃) δ 0.82–0.95 (m, 8H, CH₃, CH₂D); 1.22–1.39 (m, 5H, CH, CH₂); 1.04–1.15, 1.26–1.35 (AB, m, 1H, CHC*H*₂); 1.10–1.18, 1.24–1.35 (AB, m, 1H, CHC*H*₂). ¹³C NMR (CDCl₃) δ 18.88 (t, C₁, J_{C-D} = 19.0 Hz), 34.30 (C₂), 36.46 (C₃), 29.50 (C₄), 23.03 (C₅), 14.22 (C₆), 29.47 (C₇), 11.36 (C₈). MS *m/z*: 115 [M⁺].

Spectral data of products were identical to those of authentic sample **2a** [17], **2b** [16], **3** [8], and **16** [4a].

4.3. Reaction of hexene-1 with AIR_3 in the presence of L_2ZrH_2 (L = Cp, Cp')

A 10 ml flask equipped with a magnetic stirrer and filled with argon was loaded with 1 mmol of L_2ZrH_2 , 1.0 ml of toluene (benzene), 2–60 mmol of AlR₃ and 1–50 mmol of hexene-1. The reaction mixture was stirred for 24 h at 22 °C. Then the mixture was decomposed with 10% HCl or DCl at 0 °C. The products were extracted with benzene; further, the organic layer was dried over Na₂SO₄ and analyzed by GC–MS.

4.4. Reaction of hexene-1 with AlR₃ in the presence of Cp₂ZrHCl

A 10 ml flask equipped with a magnetic stirrer and filled with argon was loaded with 1 mmol of Cp₂ZrHCl, 1.0 ml of toluene (benzene), 2–60 mmol AlR₃ and 2–50 mmol of hexene-1. The mixture was stirred for 24 h at 22 °C. The mixture was decomposed with 10% HCl or DCl at 0 °C. The products were extracted with benzene; further, the organic layer was dried over Na₂SO₄ and analyzed by GC–MS.

4.5. NMR study of the interaction of [Cp₂ZrH₂]₂ with AlEt₃

An NMR tube filled with argon was loaded with 0.6 mmol (134 mg) of Cp_2ZrH_2 and 0.4 ml of d_8 -toluene. AlEt₃ (0.6 mmol, 0.11 ml) was added dropwise until the precipitate was dissolved. Finally the formation of complex **16** was observed [7a]. The mix-

ture was cooled to 0 °C, then 0.6 mmol of AlEt₃ were added. The formation of complexes 14' and 17 was observed after 20 min by NMR.

Complex **14** (300 K). ¹H NMR (C_7D_8) δ –3.33 (s, 1H, ZrHAI), –0.81 (dd, AB, ²J_{HH} = 10.0 Hz, 2H, AlCH₂), 1.30 (m, 2H, ZrCH₂), 0.25–0.29 (m, 4H, AlCH₂CH₃), 1.26 (t, ³J_{HH} = 8.0 Hz, 6H, AlCH₂CH₃), 5.19 (s, 10H, Cp). ¹³C NMR (C_6D_6) δ –8.94 (t, J_{C-H} = 126 Hz, AlCH₂), 31.46 (t, J_{C-H} = 147 Hz, ZrCH₂), 2.44 (AlCH₂CH₃), 9.41 (AlCH₂CH₃), 102.28 (Cp).

Acknowledgements

The authors thank the Foundation of the President of Russian Federation (Program for Support of Leading Scientific Schools, U.M. Dzhemilev, Grant NSh-2349.2008.3, Program for Support of Young Ph.D. Scientists, L.V. Parfenova, Grant MK-4526.2007.3), and the Russian Foundation of Basic Research (Grant No. 08-03-97010) for financial support. We thank E. Paramonov for recording and interpretation of mass-spectral data.

References

- (a) D.E. Van Horn, E.-i. Negishi, J. Am. Chem. Soc. 100 (1978) 2252;
 (b) T. Yoshida, E.-i. Negishi, J. Am. Chem. Soc. 103 (1981) 4985;
 (c) E.-i. Negishi, D.E. Van Horn, T. Yoshida, J. Am. Chem. Soc. 107 (1985) 6639;
 (d) E.-i. Negishi, D.Y. Kondakov, D. Choueiri, K. Kasai, T. Takahashi, J. Am. Chem. Soc. 118 (1996) 9577;
- (e) E.-i. Negishi, Bull. Chem. Soc. Jpn. 80 (2007) 233.
- [2] (a) D.Y. Kondakov, E.-i. Negishi, J. Am. Chem. Soc. 117 (1995) 10771;
 (b) D.Y. Kondakov, E.-i. Negishi, J. Am. Chem. Soc. 118 (1996) 1577.
- (b) D.Y. Kondakov, E.-I. Regisin, J. Ani. Chem. Soc. 118 (1)
 [3] (a) P. Wipf, S. Ribe, Org. Lett. 2 (12) (2000) 1713;
 (b) S. Ribe, P. Wipf, Chem. Commun. 4 (2001) 299.
- (a) U.M. Dzhemilev, A.G. Ibragimov, A.P. Zolotarev, R.R. Muslukhov, G.A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 38 (1989) 194 (Engl. Transl.);
 (b) U.M. Dzhemilev, A.G. Ibragimov, A.P. Zolotarev, Mendeleev Commun. 4 (1992) 135;

- (c) U.M. Dzhemilev, A.G. Ibragimov, Russ. Chem. Rev. 69 (2000) 121;
- (d) L.M. Khalilov, L.V. Parfenova, S.V. Rusakov, A.G. Ibragimov, U.M. Dzhemilev, Russ. Chem. Bull. Int. Ed. 49 (2000) 2051;
- (e) A.V. Balaev, L.V. Parfenova, I.M. Gubaidullin, S.V. Rusakov, S.I. Spivak, L.M. Khalilov, U.M. Dzhemilev, Doklady Phys. Chem. 381 (2001) 279.
 [5] (a) W. Kaminsky, H. Sinn, Liebigs Ann. Chem. 3 (1975) 424;
- (b) W. Kaminsky, H. Vollmer, Liebigs Ann. Chem. 3 (1975) 424, (b) W. Kaminsky, H. Vollmer, Liebigs Ann. Chem. 3 (1975) 438.
- [6] (a) E. Negishi, T. Yoshida, Tetrahedron Lett. 21 (1980) 1501;
- (b) U.M. Dzhemilev, A.G. Ibragimov, O.S. Vostrikova, G.A. Tolstikov, L.M. Zelenova, Bull. Acad. Sci. USSR, Div. Chem. Sci. (1981) 30 (Engl. Transl.).
- [7] (a) L.V. Parfenova, S.V. Pechatkina, L.M. Khalilov, U.M. Dzhemilev, Russ. Chem. Bull. Int. Ed. 54 (2005) 316;
 (b) L.V. Parfenova, A.V. Balaev, I.M. Gubaidullin, S.V. Pechatkina, L.R. Abzalilova, S.I. Spivak, L.M. Khalilov, U.M. Dzhemilev, Int. J. Chem. Kinet. 39
- (2007) 333.
 [8] (a) O.S. Vostrikova, A.G. Ibragimov, G.A. Tolstikov, L.M. Zelenova, U.M. Dzemilev, Izv. Acad. Nauk SSSR, Ser. Khim. 2 (1980) 2320;
 - (b) J. Christoffers, R.G. Bergman, Inorg. Chim. Acta 270 (1998) 20;
 - (c) Sh.Y. Ren, B.J. Shen, Q.X. Guo, Chin. Chem. Lett. 16 (2005) 1213.
- [9] (a) A.A. Panasenko, L.M. Khalilov, A.V. Kuchin, G.A. Tolstikov, Izv. Acad. Nauk SSSR, Ser. Khim. 11 (1980) 2652;
 - (b) R. Benn, A. Rufinska, Angew. Chem., Int. Ed. Engl. 25 (1986) 861.
 - [10] S. Beck, H.H. Brintzinger, Inorg. Chim. Acta 270 (1998) 376.
 - [11] (a) E. Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391;
 - (b) M. Bochmann, J. Organomet. Chem. 689 (2004) 3982. [12] C. Kowala, P.C. Wailes, H. Weigold, J.A. Wunderlich, J. Chem. Soc., Chem.
 - Commun. 23 (1974) 993. [13] G.C. Levy, R.L. Lichter, G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance
 - Spectroscopy, Wiley, 1980. [14] (a) R.Kh. Freidlina, E.M. Brainina, A.N. Nesmeyanov, Dokl. Acad. Nauk SSSR 138 (1969) 1369;
 - (b) L.T. Reynolds, G. Wilkinson, J. Inorg. Nucl. Chem. 9 (1959) 86;
 - (c) N. Piccolrovazzi, P. Pino, G. Consiglio, A. Sironi, M. Moret, J. Am. Chem. Soc. 9 (1990) 3098;
 - (d) E. Samuel, R. Setton, J. Organomet. Chem. 4 (1965) 156.
 - [15] L.I. Shoer, K.I. Gell, J. Schwartz, J. Organomet. Chem. 136 (1977) 19.
 - [16] U.M. Dzemilev, O.S. Vostrikova, G.A. Tolstikov, A.G. Ibragimov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (1979) 28 (Engl. Transl.).
 - [17] http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology).